Abstract

As autonomous driving technology progresses forward, frequency modulated continuous wave (FMCW) radar is projected to be used more widely for automotive purposes. Due to the expected rapid growth of road vehicles equipped with radars, more attention is paid to finding ways of reducing mutual interference among automotive radars. In this letter, a novel scheme is proposed to solve the issue of velocity estimation for FMCW radar with random pulse position modulation, which is a promising technique to drastically mitigate mutual interference. The proposed scheme uses a two-dimensional convolutional neural network working on covariance matrices of signals extracted from the region of interest as well as the information of chirp positions. Analysis of its performance, in particular comparison with that of orthogonal matching pursuit, with simulation and experimental data demonstrate the potential of the approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.