Abstract

This technology can prevent accidents involving large vehicles, such as trucks or buses, by selecting an optimal driving lane for safe autonomous driving. This paper proposes a method for detecting forward-driving vehicles within road images obtained from a vehicle’s DashCam. The proposed method also classifies the types and colors of the detected vehicles. The proposed method uses a YOLO deep learning network for vehicle detection based on a pre-trained ResNet-50 convolutional neural network. Additionally, a Resnet-50 CNN-based object classifier, using transfer learning, was used to classify vehicle types and colors. Vehicle types were classified into four categories based on size whereas vehicle colors were classified into eight categories. During autonomous driving, vehicle types are used to determine driving lanes, whereas vehicle colors are used to distinguish the road infrastructure, such as lanes, vehicles, roads, backgrounds, and buildings. The datasets used for learning consisted of road images acquired in various driving environments. The proposed method achieved a vehicle detection accuracy of 91.5%, vehicle type classification accuracy of 93.9%, and vehicle color classification accuracy of 94.2%. It accurately detected vehicles and classified their types and colors. These can be applied to autonomous and safe driving support systems to enhance the safety of autonomous vehicles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.