Abstract

Transient identification of condition monitoring data in nuclear reactor is important for system health assessment. Conventionally, the operating transients are correlated with the pre-designed ones by human operators during operations. However, due to necessary conservatism and significant differences between the operating and pre-designed transients, it has been less effective to manually identify transients, that usually contribute to different system degradation modes. This paper proposes a deep learning-based unsupervised representation clustering method for automatic transient pattern recognition based on the on-site condition monitoring data. Sample entropy is used as indicator for transient extraction, and a pre-training stage is implemented using an auto-encoder architecture for learning high-level features. An iterative representation clustering algorithm is further proposed to enhance the clustering effects, where a novel distance metric learning strategy is integrated. Experiments on a real-world nuclear reactor condition monitoring dataset validate the effectiveness and superiority of the proposed method, which provides a promising tool for transient identification in the real industrial scenarios. This study offers a new perspective in exploring unlabeled data with deep learning, and the end-to-end implementation scheme facilitates applications in the real nuclear industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.