Abstract

In this paper, a means of transmit power control for underlaid device-to-device (D2D) communication is proposed based on deep learning technology. In the proposed scheme, the transmit power of D2D user equipment (DUE) is autonomously learned via a deep neural network such that the weighted sum rate (WSR) of DUEs can be maximized by considering the interference from cellular user equipment. Unlike conventional transmit power control schemes in which complex optimization problems have to be solved in an iterative manner, which possibly requires long computation time, in our proposed scheme the transmit power can be determined with a relatively low computation time. Through simulations, we confirm that the proposed scheme achieves a sufficiently high WSR with a sufficiently low computation time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call