Abstract

This comprehensive review explores the role of deep learning (DL) in glioma segmentation using multiparametric magnetic resonance imaging (MRI) data. The study surveys advanced techniques such as multiparametric MRI for capturing the complex nature of gliomas. It delves into the integration of DL with MRI, focusing on convolutional neural networks (CNNs) and their remarkable capabilities in tumor segmentation. Clinical applications of DL-based segmentation are highlighted, including treatment planning, monitoring treatment response, and distinguishing between tumor progression and pseudo-progression. Furthermore, the review examines the evolution of DL-based segmentation studies, from early CNN models to recent advancements such as attention mechanisms and transformer models. Challenges in data quality, gradient vanishing, and model interpretability are discussed. The review concludes with insights into future research directions, emphasizing the importance of addressing tumor heterogeneity, integrating genomic data, and ensuring responsible deployment of DL-driven healthcare technologies. EVIDENCE LEVEL: N/A TECHNICAL EFFICACY: Stage 2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.