Abstract

Recently, deep learning-based image quality enhancement models have been proposed to improve the perceptual quality of distorted synthesized views impaired by compression and the Depth Image-Based Rendering (DIBR) process in a multi-view video system. However, due to the lack of Multi-view Video plus Depth (MVD) data, the training data for quality enhancement models is small, which limits the performance and progress of these models. Augmenting the training data to enhance the synthesized view quality enhancement (SVQE) models is a feasible solution. In this paper, a deep learning-based SVQE model using more synthetic synthesized view images (SVIs) is suggested. To simulate the irregular geometric displacement of DIBR distortion, a random irregular polygon-based SVI synthesis method is proposed based on existing massive RGB/RGBD data, and a synthetic synthesized view database is constructed, which includes synthetic SVIs and the DIBR distortion mask. Moreover, to further guide the SVQE models to focus more precisely on DIBR distortion, a DIBR distortion mask prediction network which could predict the position and variance of DIBR distortion is embedded into the SVQE models. The experimental results on public MVD sequences demonstrate that the PSNR performance of the existing SVQE models, e.g., DnCNN, NAFNet, and TSAN, pre-trained on NYU-based synthetic SVIs could be greatly promoted by 0.51-, 0.36-, and 0.26 dB on average, respectively, while the MPPSNRr performance could also be elevated by 0.86, 0.25, and 0.24 on average, respectively. In addition, by introducing the DIBR distortion mask prediction network, the SVI quality obtained by the DnCNN and NAFNet pre-trained on NYU-based synthetic SVIs could be further enhanced by 0.02- and 0.03 dB on average in terms of the PSNR and 0.004 and 0.121 on average in terms of the MPPSNRr.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.