Abstract
Background and objectivesSurgical suturing is a fundamental skill that all medical and dental students learn during their education. Currently, the grading of students' suture skills in the medical faculty during general surgery training is relative, and students do not have the opportunity to learn specific techniques. Recent technological advances, however, have made it possible to classify and measure suture skills using artificial intelligence methods, such as Deep Learning (DL). This work aims to evaluate the success of surgical suture using DL techniques. MethodsSix Convolutional Neural Network (CNN) models: VGG16, VGG19, Xception, Inception, MobileNet, and DensNet. We used a dataset of suture images containing two classes: successful and unsuccessful, and applied statistical metrics to compare the precision, recall, and F1 scores of the models. ResultsThe results showed that Xception had the highest accuracy at 95 %, followed by MobileNet at 91 %, DensNet at 90 %, Inception at 84 %, VGG16 at 73 %, and VGG19 at 61 %. We also developed a graphical user interface that allows users to evaluate suture images by uploading them or using the camera. The images are then interpreted by the DL models, and the results are displayed on the screen. ConclusionsThe initial findings suggest that the use of DL techniques can minimize errors due to inexperience and allow physicians to use their time more efficiently by digitizing the process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.