Abstract

The authors propose an alternative route to circumvent the limitation of neutron flux using the recent deep learning super-resolution technique. The feasibility of accelerating data collection has been demonstrated by using small-angle neutron scattering (SANS) data collected from the EQ-SANS instrument at Spallation Neutron Source (SNS). Data collection time can be reduced by increasing the size of binning of the detector pixels at the sacrifice of resolution. High-resolution scattering data is then reconstructed by using a deep learning-based super-resolution method. This will allow users to make critical decisions at a much earlier stage of data collection, which can accelerate the overall experimental workflow.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.