Abstract
The thermal camera systems can be used in all kinds of applications that require the detection of heat change, but thermal imaging systems are highly costly systems. In recent years, developments in the field of deep learning have increased the success by obtaining quality results compared to traditional methods. In this paper, thermal images of neonates (healthy - unhealthy) obtained from a high-resolution thermal camera were used and these images were evaluated as high resolution (ground truth) images. Later, these thermal images were downscaled at 1/2, 1/4, 1/8 ratios, and three different datasets consisting of low-resolution images in different sizes were obtained. In this way, super-resolution applications have been carried out on the deep network model developed based on generative adversarial networks (GAN) by using three different datasets. The successful performance of the results was evaluated with PSNR (peak signal to noise ratio) and SSIM (structural similarity index measure). In addition, healthy - unhealthy classification application was carried out by means of a classifier network developed based on convolutional neural networks (CNN) to evaluate the super-resolution images obtained using different datasets. The obtained results show the importance of combining medical thermal imaging with super-resolution methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.