Abstract
Monitoring the concentration of pigments like chlorophyll (Chl) in water-bodies is a key task to contribute to their conservation. However, with the existing sensor technology, measurement in real-time and with enough frequency to ensure proper risk management is not completely feasible. In this work, with the concept of data-driven soft-sensing, three hydrophysical features are used together with three meteorological ones to estimate the concentration of Chl in two tributaries of the River Thames. Data driven models, specifically neural networks, are used with three learning approaches: individual, centralized and federated. Data reduction scenarios are proposed in order to analyze the performance of each approach when less data is available. The best results in the training are usually obtained with the individual approach. However, the federated learning provides better generalization ability. It was also observed that in most of the cases the results of the federated learning approach improve those of the centralized one.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.