Abstract

This work presents automated apnea event de-tection using blood oxygen saturation (SpO2) and pulse rate (PR), conveniently recorded with a pulse oximeter. A large, diverse cohort of patients (n=8068, age≥40 years) from the sleep heart health study dataset with annotated sleep events have been employed in this study. A deep-learning model is trained to detect apnea in successive 30 s epochs and performances are assessed on two independent sub-cohorts of test data. The proposed algorithm showcases the highest test performance of 90.4 % area under the receiver operating characteristic curve and 58.9% area under the precision-recall curve for epoch-based apnea detection. Additionally, the model consistently performs well across various apnea subtypes, with the highest sensitivity of 93.4 % for obstructive apnea detection followed by 90.5 % for central apnea and 89.1 % for desaturation associated hypopnea. Overall, the proposed algorithm provides a robust and sensitive approach for sleep apnea event detection using a noninvasive pulse oximeter sensor. Clinical Relevance - The study establishes high sensitivity for automated epoch-based apnea detection across a diverse study cohort with various comorbidities using simply a pulse oximeter. This highly cost-effective approach could also enable convenient sleep and health monitoring over long-term.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call