Abstract
In recent years, deep learning (DL) techniques have shown great potential in wireless communications. Unlike DL-based receivers for time-invariant or slow time-varying channels, we propose a new DL-based receiver for single carrier communication in time-varying underwater acoustic (UWA) channels. Without the off-line training, the proposed receiver alternately works with online training and test modes for accommodating the time variability of UWA channels. Simulation results show a better detection performance achieved by the proposed DL-based receiver and with a considerable reduction in training overhead compared to the traditional channel-estimate (CE)-based decision feedback equalizer (DFE) in simulation scenarios with a measured sound speed profile. The proposed receiver has also been tested by using the data recorded in an experiment in the South China Sea at a communication range of 8 km. The performance of the receiver is evaluated for various training overheads and noise levels. Experimental results demonstrate that the proposed DL-based receiver can achieve error-free transmission for all 288 burst packets with lower training overhead compared to the traditional receiver with a CE-based DFE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.