Abstract

In this paper, we propose a long short-term memory-based deep learning (DL) architecture for signal detection in uplink and downlink rate-splitting multiple access systems with multi-carrier modulation, over Nakagami-m fading and generalized Gaussian noise (GGN). The proposed DL detector completely eliminates the need for the use of successive interference cancellation (SIC), which suffers from disadvantages such as error propagation. In an orthogonal frequency division multiplexing setting, we show that the proposed DL detector outperforms the standard SIC receivers such as the least squares detector and the minimum mean-squared error receiver, and attains the performance of the optimal maximum likelihood detector, in terms of the symbol error rate (SER). Furthermore, we study the effects of the shaping parameter of GGN, hyperparameters of the DL network such as batch size and learning rate on the SER performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.