Abstract

In this study, a novel approach of processing μCT images to create digital material twins is presented. A deep convolutional neural network (DCNN) was implemented and used to segment μCT images of two different types of reinforcement (2D glass and 3D carbon). The DCNN successfully segmented the images based on multi-scale features extracted using data-driven convolutional filters. The network was trained using scanned μCT images, along with images extracted from computer-generated virtual models of the reinforcements. One of the convolutional layers of the trained network was utilized to extract features to be used in creating a machine learning-based model. The extracted features and the raw gray-scale data were used to train a supervised k-nearest neighbor (k-NN) model for pixel-wise classification. The performance of both approaches was evaluated by comparing the results with manually segmented images. The trained deep neural network was able to provide faster and superior predictions of different features of the reinforcements as compared to the conventional machine learning approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.