Abstract

Emotion recognition from electroencephalogram (EEG) signals requires accurate and efficient signal processing and feature extraction. Deep learning technology has enabled the automatic extraction of raw EEG signal features that contribute to classifying emotions more accurately. Despite such advances, classification of emotions from EEG signals, especially recorded during recalling specific memories or imagining emotional situations has not yet been investigated. In addition, high-density EEG signal classification using deep neural networks faces challenges, such as high computational complexity, redundant channels, and low accuracy. To address these problems, we evaluate the effects of using a simple channel selection method for classifying self-induced emotions based on deep learning. The experiments demonstrate that selecting key channels based on signal statistics can reduce the computational complexity by 89% without decreasing the classification accuracy. The channel selection method with the highest accuracy was the kurtosis-based method, which achieved accuracies of 79.03% and 79.36% for the valence and arousal scales, respectively. The experimental results show that the proposed framework outperforms conventional methods, even though it uses fewer channels. Our proposed method can be beneficial for the effective use of EEG signals in practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.