Abstract
Smart grid control systems (SGCSs) become more vulnerable to cyber-attacks because of the combination of the Internet of Things and communication systems. Conventional intrusion detection systems (IDSs) that have been essentially improved in order to secure information technology systems. Since SGCS datasets are asymmetric, the majority of IDSs suffer from poor precision and significant false-positive rates. A deep learning (DL) layout for constructing novel symmetric presentations of the asymmetric datasets is proposed in the present study. It is incorporated into a model created particularly for detecting attacks using DL in a SGCS environment. Deep Neural Networks and Decision Tree classifiers are utilized in the suggested attack detection model. By performing 10-fold cross-validation using 2 actual SGCS datasets, this suggested model has been assessed for its efficiency. According to the outcomes, the suggested approach is more effective than traditional schemes such as Random Forest, Support Vector Machine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.