Abstract

In the realm of medical diagnosis, the challenge posed by retinal diseases is considerable, given their potential to complicate vision and overall ocular health. A promising avenue for achieving highly accurate classifiers in detecting retinal diseases involves the application of deep learning models. However, overfitting issues often undermine the performance of these models due to the scarcity of image samples in retinal disease datasets. To address this challenge, a novel deep triplet network is proposed as a metric learning approach for detecting retinal diseases using Optical Coherence Tomography (OCT) images. Incorporating a conditional loss function tailored to the constraints of limited data samples, this deep triplet network enhances the model’s accuracy. Drawing inspiration from pre-trained models such as VGG16, the foundational architecture of our model is established. Experiments use open-access datasets comprising retinal OCT images to validate our proposed approach. The performance of the suggested model is demonstrated to surpass that of state-of-the-art models in terms of accuracy. This substantiates the effectiveness of the deep triplet network in addressing overfitting issues associated with limited data samples in retinal disease datasets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call