Abstract

Operational risk evaluation for chillers is beneficial for reducing building energy wastage. An accurate reference model can significantly improve the evaluation performance. This paper presents a novel framework for developing and applying the reference model by integrating density clustering and deep learning. Unsupervised density-based spatial clustering of applications with noise (DBSCAN) is adopted to construct the library of operating conditions and recognize operating pattern of chillers. Deep learning approach, deep belief network (DBN), is presented to learn all process data in each operating pattern. Subsequently, multiple DBN models are developed for matching various operating patterns in the condition library. A simple strategy for tuning the hyperparameters of DBN is further presented to obtain a better performance. The prediction and generalization abilities of the proposed approach are validated and compared with multivariate linear regression (MLR), support vector regression (SVR) and radial basis function (RBF) models based on the experimental data obtained from a real screw chiller. Results reveal that the proposed method yields a significant performance advantage than MLR, SVR and RBF models, especially for the extended conditions in actual applications, the mean relative errors of MLR, SVR, RBF and the proposed method are 5.8%, 11.41%, 13.73%, and 2.11%, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.