Abstract

With the rapid development of future wireless communication, the combination of NOMA technology and millimeter-wave(mmWave) technology has become a research hotspot. The application of NOMA in mmWave heterogeneous networks can meet the diverse needs of users in different applications and scenarios in future communications. In this paper, we propose a machine learning framework to deal with the user association, subchannel and power allocation problems in such a complex scenario. We focus on maximizing the energy efficiency (EE) of the system under the constraints of quality of service (QoS), interference limitation, and power limitation. Specifically, user association is solved through the Lagrange dual decomposition method, while semi-supervised learning and deep neural network (DNN) are used for the subchannel and power allocation, respectively. In particular, unlabeled samples are introduced to improve approximation and generalization ability for subchannel allocation. The simulation indicates that the proposed scheme can achieve higher EE with lower complexity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.