Abstract

BackgroundAlzheimer's disease is a chronic neurodegenerative disease that destroys brain cells, causing irreversible degeneration of cognitive functions and dementia. Its causes are not yet fully understood, and there is no curative treatment. However, neuroimaging tools currently offer help in clinical diagnosis, and, recently, deep learning methods have rapidly become a key methodology applied to these tools. The reason is that they require little or no image preprocessing and can automatically infer an optimal representation of the data from raw images without requiring prior feature selection, resulting in a more objective and less biased process. However, training a reliable model is challenging due to the significant differences in brain image types. MethodsWe aim to contribute to the research and study of Alzheimer's disease through computer-aided diagnosis (CAD) by comparing different deep learning models. In this work, there are three main objectives: i) to present a fully automated deep-ensemble approach for dementia-level classification from brain images, ii) to compare different deep learning architectures to obtain the most suitable one for the task, and (iii) evaluate the robustness of the proposed strategy in a deep learning framework to detect Alzheimer's disease and recognise different levels of dementia. The proposed approach is specifically designed to be potential support for clinical care based on patients' brain images. ResultsOur strategy was developed and tested on three MRI and one fMRI public datasets with heterogeneous characteristics. By performing a comprehensive analysis of binary classification (Alzheimer's disease status or not) and multiclass classification (recognising different levels of dementia), the proposed approach can exceed state of the art in both tasks, reaching an accuracy of 98.51% in the binary case, and 98.67% in the multiclass case averaged over the four different data sets. ConclusionWe strongly believe that integrating the proposed deep-ensemble approach will result in robust and reliable CAD systems, considering the numerous cross-dataset experiments performed. Being tested on MRIs and fMRIs, our strategy can be easily extended to other imaging techniques. In conclusion, we found that our deep-ensemble strategy could be efficiently applied for this task with a considerable potential benefit for patient management.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.