Abstract

The perovskite crystal structure represents a semiconductor material poised for widespread application, underpinned by attributes encompassing heightened efficiency, cost-effectiveness and remarkable flexibility. Notably, strontium titanate (SrTiO3)-type perovskite, a prototypical ferroelectric dielectric material, has emerged as a pre-eminent matrix material for enhancing the energy storage capacity of perovskite. Typically, the strategy involves augmenting its dielectric constant through doping to enhance energy storage density. However, SrTiO3 doping data are plagued by significant dispersion, and the small sample size poses a formidable research hurdle, hindering the investigation of dielectric property and energy storage density enhancements. This study endeavours to address this challenge, our foundation lies in the compilation of 200 experimental records related to SrTiO3-type perovskite doping, constituting a small dataset. Subsequently, an interactive framework harnesses deep neural network models and a one-dimensional convolutional neural network model to predict and scrutinize the dataset. Distinctively, the mole percentage of doping elements exclusively serves as input features, yielding significantly enhanced accuracy in dielectric performance prediction. Lastly, rigorous comparisons with traditional machine learning models, specifically gradient boosting regression, validate the superiority and reliability of deep learning models. This research advances a novel, effective methodology and offers a valuable reference for designing and optimizing perovskite energy storage materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.