Abstract
Obesity recognition in adolescents is a growing concern. This study presents a deep learning-based obesity identification framework that integrates smartphone inertial measurements with deep learning models to address this issue. Utilizing data from accelerometers, gyroscopes, and rotation vectors collected via a mobile health application, we analyzed gait patterns for obesity indicators. Our framework employs three deep learning models: convolutional neural networks (CNNs), long-short-term memory network (LSTM), and a hybrid CNN-LSTM model. Trained on data from 138 subjects, including both normal and obese individuals, and tested on an additional 35 subjects, the hybrid model achieved the highest accuracy of 97%, followed by the LSTM model at 96.31% and the CNN model at 95.81%. Despite the promising outcomes, the study has limitations, such as a small sample and the exclusion of individuals with distorted gait. In future work, we aim to develop more generalized models that accommodate a broader range of gait patterns, including those with medical conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International journal of environmental research and public health
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.