Abstract
In this paper, we propose a high resolution grid-based deep learning source localization that precisely estimates the locations of near-field sources without a priori knowledge of the number of sources. The proposed method consists of a principal component analysis network (PCAnet) and a spatial spectrum network (Sp2net). The proposed PCAnet calculates the noise spaces of the received signals by convolutional layers without a priori knowledge or the estimation of the number of sources and has the lower complexity than eigenvalue decomposition (EVD). The proposed Sp2net calculates the spatial spectrum with a linear layer from the output of the PCAnet and classifies dense location grids with a convolutional neural network (CNN). From the spatial spectrum, this paper also proposes an activation function to enlarge the values at the grid points where the near-field sources exist, which are differentiable for all input values. Then, the direction of arrivals (DOAs) and the ranges of the near-field sources are estimated with high resolution. Computer simulations demonstrated that the proposed method had better DOA and range estimation performances than those of the conventional methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.