Abstract
ObjectiveThe manual recording of electronic health records (EHRs) by clinicians in the emergency department (ED) is time-consuming and challenging. In light of recent advancements in large language models (LLMs) such as GPT and BERT, this study aimed to design and validate LLMs for automatic clinical diagnoses. The models were designed to identify 12 medical symptoms and 2 patient histories from simulated clinician–patient conversations within 6 primary symptom scenarios in emergency triage rooms. Materials and methodWe developed classification models by fine-tuning BERT, a transformer-based pre-trained model. We subsequently analyzed these models using eXplainable artificial intelligence (XAI) and the Shapley additive explanation (SHAP) method. A Turing test was conducted to ascertain the reliability of the XAI results by comparing them to the outcomes of tasks performed and explained by medical workers. An emergency medicine specialist assessed the results of both XAI and the medical workers. ResultsWe fine-tuned four pre-trained LLMs and compared their classification performance. The KLUE-RoBERTa-based model demonstrated the highest performance (F1-score: 0.965, AUROC: 0.893) on human-transcribed script data. The XAI results using SHAP showed an average Jaccard similarity of 0.722 when compared with explanations of medical workers for 15 samples. The Turing test results revealed a small 6% gap, with XAI and medical workers receiving the mean scores of 3.327 and 3.52, respectively. ConclusionThis paper highlights the potential of LLMs for automatic EHR recording in Korean EDs. The KLUE-RoBERTa-based model demonstrated superior classification performance. Furthermore, XAI using SHAP provided reliable explanations for model outputs. The reliability of these explanations was confirmed by a Turing test.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.