Abstract

As a non-invasive imaging modality, optical coherence tomography (OCT) can provide micrometer-resolution 3D images of retinal structures. These images can help reveal disease-related alterations below the surface of the retina, such as the presence of edema, or accumulation of fluid which can distort vision, and are an indication of disruptions in the vasculature of the retina. In this paper, a new framework is proposed for multiclass fluid segmentation and detection in the retinal OCT images. Based on the intensity of OCT images and retinal layer segmentations provided by a graph-cut algorithm, a fully convolutional neural network was trained to recognize and label the fluid pixels. Random forest classification was performed on the segmented fluid regions to detect and reject the falsely labeled fluid regions. The proposed framework won the first place in the MICCAI RETOUCH challenge in 2017 on both the segmentation performance (mean Dice: 0.7667) and the detection performance (mean AUC: 1.00) tasks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.