Abstract

In critical clinical medical image analysis applications, such as surgical navigation and tumor monitoring, image registration is crucial. Recognizing the potential for enhanced accuracy in existing unsupervised image registration techniques for single-modal imagery, this research introduces an innovative deep learning-based image registration algorithm. Its novelty resides in integrating short and long connections to create a densely connected structure, markedly refining the feature map interconnectivity within the U-Net architecture. This advancement addresses the significant semantic gap issues arising from disparities in feature map sampling depths. Moreover, the algorithm incorporates a channel attention mechanism within the U-shaped network's decoder, significantly mitigating image noise and facilitating the generation of smoother deformation fields. This enhancement not only boosts the model's detail sensitivity but also markedly increases image registration precision, particularly evident when processing single-modal brain MRI datasets, thereby proving the algorithm's efficacy and utility. Extensive clinical application-based training and testing have underscored this algorithm's substantial contributions to medical image registration accuracy enhancement. Overall, by leveraging deep learning technologies and innovative algorithmic structures, this study addresses pivotal challenges in medical image registration, offering more precise and dependable support for clinical applications like surgical navigation and tumor surveillance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call