Abstract
This study aimed to develop a deep learning model for the prediction of V20 (the volume of the lung parenchyma that received ≥20 Gy) during intensity-modulated radiation therapy using chest X-ray images. The study utilized 91 chest X-ray images of patients with lung cancer acquired routinely during the admission workup. The prescription dose for the planning target volume was 60 Gy in 30 fractions. A convolutional neural network-based regression model was developed to predict V20. To evaluate model performance, the coefficient of determination (R2), root mean square error (RMSE), and mean absolute error (MAE) were calculated with conducting a four-fold cross-validation method. The patient characteristics of the eligible data were treatment period (2018-2022) and V20 (19.3%; 4.9%-30.7%). The predictive results of the developed model for V20 were 0.16, 5.4%, and 4.5% for the R2, RMSE, and MAE, respectively. The median error was -1.8% (range, -13.0% to 9.2%). The Pearson correlation coefficient between the calculated and predicted V20 values was 0.40. As a binary classifier with V20 <20%, the model showed a sensitivity of 75.0%, specificity of 82.6%, diagnostic accuracy of 80.6%, and area under the receiver operator characteristic curve of 0.79. The proposed deep learning chest X-ray model can predict V20 and play an important role in the early determination of patient treatment strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.