Abstract

Abstract This article addresses language identification at the word level in Indian social media corpora taken from Facebook, Twitter and WhatsApp posts that exhibit code-mixing between English-Hindi, English-Bengali, as well as a blend of both language pairs. Code-mixing is a fusion of multiple languages previously mainly associated with spoken language, but which social media users also deploy when communicating in ways that tend to be rather casual. The coarse nature of code-mixed social media text makes language identification challenging. Here, the performance of deep learning on this task is compared to feature-based learning, with two Recursive Neural Network techniques, Long Short Term Memory (LSTM) and bidirectional LSTM, being contrasted to a Conditional Random Fields (CRF) classifier. The results show the deep learners outscoring the CRF, with the bidirectional LSTM demonstrating the best language identification performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.