Abstract

PurposeTo compare performance of 1-mm deep learning reconstruction (DLR) with 3-mm routine MRI imaging for the delineation of pituitary axis and identification of cavernous sinus invasion for pituitary macroadenoma. MethodThis retrospective study included 104 patients (59.4 ± 13.1 years; 46 women) who underwent an MRI protocol including 1-mm deep learning-reconstructed and 3-mm routine images for evaluating pituitary adenoma between August 2019 and October 2020. Five readers (24, 9, 2 years, and <1 year of experience) assessed the delineation of pituitary axis (gland and stalk) and the presence of cavernous sinus invasion for using a pairwise design. The signal-to-noise ratio (SNR) was measured. Diagnostic performance as well as image preference data were analysed and compared according to the readers’ experience using the McNemar test. ResultsFor delineation of normal pituitary axis, all readers preferred thin 1-mm DLR MRI over 3-mm MRI (overall superiority, 55.8 %, P <.001), with this preference being greater in the less experienced readers (92.3 % vs. 55.8 % [expert], P <.001). The readers showed higher diagnostic performance for cavernous sinus invasion on 1-mm (AUC, 0.91 and 0.92) than on 3-mm imaging (AUC, 0.87 and 0.88). The SNR of the 1-mm DLR was 1.21-fold higher than that of the routine 3-mm imaging. ConclusionDeep learning reconstruction-based 1-mm imaging demonstrates improved image quality and better delineation of microstructure in the sellar fossa and is preferred by both radiologists and non-radiologist physicians, especially in less experienced readers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call