Abstract
Cotton is one of the economically significant agricultural products in Ethiopia, but it is exposed to different constraints in the leaf area. Mostly, these constraints are identified as diseases and pests that are hard to detect with bare eyes. This study focused to develop a model to boost the detection of cotton leaf disease and pests using the deep learning technique, CNN. To do so, the researchers have used common cotton leaf disease and pests such as bacterial blight, spider mite, and leaf miner. K-fold cross-validation strategy was worn to dataset splitting and boosted generalization of the CNN model. For this research, nearly 2400 specimens (600 images in each class) were accessed for training purposes. This developed model is implemented using python version 3.7.3 and the model is equipped on the deep learning package called Keras, TensorFlow backed, and Jupyter which are used as the developmental environment. This model achieved an accuracy of 96.4% for identifying classes of leaf disease and pests in cotton plants. This revealed the feasibility of its usage in real-time applications and the potential need for IT-based solutions to support traditional or manual disease and pest’s identification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Electrical and Computer Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.