Abstract

The Train Rolling-Stock Examination (TRSE) is a safety examination process that physically examines the bogie parts of a moving train, typically at speeds over 30 km/h. Currently, this inspection process is done manually by railway personnel in many countries to ensure safety and prevent interruptions to rail services. Although many earlier attempts have been made to semi-automate this process through computer-vision models, these models are iterative and still require manual intervention. Consequently, these attempts were unsuitable for real-time implementations. In this work, we propose a detection model by utilizing a deep-learning based classifier that can precisely identify bogie parts in real-time without manual intervention, allowing an increase in the deployability of these inspection systems. We implemented the Anchor-Free Yolov8 (AFYv8) model, which has a decoupled-head module for recognizing bogie parts. Additionally, we incorporated bogie parts tracking with the AFYv8 model to gather information about any missing parts. To test the effectiveness of the AFYv8-model, the bogie videos were captured at three different timestamps and the result shows the increase in the recognition accuracy of TRSE by 10 % compared to the previously developed classifiers. This research has the potential to enhance railway safety and minimize operational interruptions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.