Abstract
The prognostic performance of data-driven approaches closely depends on the features extracted from the measurement. For a high level of prognostic performance, features must be carefully designed to represent the machine's health state well and are generally obtained by signal processing techniques. These features are themselves used as health indicators (HI) or used to construct HIs. However, many conventional HIs are heavily relying on the type of machine components and expert domain knowledge. To solve these drawbacks, we propose a fully data-driven method, that is, the adversarial autoencoder-based health indicator (AAE-HI) for remaining useful life (RUL) prediction. Accelerated degradation tests of bearings collected from PRONOSTIA were used to validate the proposed AAE-HI method. It is shown that our proposed AAE-HI can autonomously find monotonicity and trendability of features, which will capture the degradation progression from the measurement. Therefore, the performance of AAE-HI in RUL prediction is promising compared with other conventional HIs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: INTER-NOISE and NOISE-CON Congress and Conference Proceedings
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.