Abstract
This paper presents a comprehensive study on fall recognition and forecasting for reconfigurable stair-accessing robots by leveraging deep learning techniques. The proposed framework integrates machine learning algorithms and recurrent neural networks (RNNs), specifically Long Short-Term Memory (LSTM) and Bidirectional LSTM (BiLSTM), for fall detection of service robots on staircases. The reconfigurable stair-accessing robot sTetro serves as the platform, and the fall data required for training models are generated in a simulation environment. The two machine learning algorithms are compared and their effectiveness on the fall recognition task is reported. The results indicate that the BiLSTM model effectively classifies falls with a median categorical accuracy of 94.10% in simulation and 90.02% with limited experiments. Additionally, the BiLSTM model can be used for forecasting, which is practically valuable for making decisions well before the onset of a free fall. This study contributes insights into the design and implementation of fall detection systems for service robots used to navigate staircases through deep learning approaches. Our experimental and simulation data, along with the simulation steps, are available for reference and analysis via the shared link.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.