Abstract
While videolaryngoscopy has resulted in better overall success rates of tracheal intubation, airway assessment is still an important prerequisite for safe airway management. This study aimed to create an artificial intelligence model to identify difficult videolaryngoscopy using a neural network. Baseline characteristics, medical history, bedside examination and seven facial images were included as predictor variables. ResNet-18 was introduced to recognise images and extract features. Different machine learning algorithms were utilised to develop predictive models. A videolaryngoscopy view of Cormack-Lehane grade of 1 or 2 was classified as 'non-difficult', while grade 3 or 4 was classified as 'difficult'. A total of 5849 patients were included, of whom 5335 had non-difficult and 514 had difficult videolaryngoscopy. The facial model (only including facial images) using the Light Gradient Boosting Machine algorithm showed the highest area under the curve (95%CI) of 0.779 (0.733-0.825) with a sensitivity (95%CI) of 0.757 (0.650-0.845) and specificity (95%CI) of 0.721 (0.626-0.794) in the test set. Compared with bedside examination and multivariate scores (El-Ganzouri and Wilson), the facial model had significantly higher predictive performance (p < 0.001). Artificial intelligence-based facial analysis is a feasible technique for predicting difficulty during videolaryngoscopy, and the model developed using neural networks has higher predictive performance than traditional methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.