Abstract

Obtaining the downlink channel state information in frequency division duplexing (FDD) massive multi-input multi-output (MIMO) systems is challenging due to the overwhelming training and feedback overhead. In this letter, motivated by the existence of mapping characteristics between uplink and downlink, we propose a covariance variational auto-encoder network (CVENet) to approximate the mapping function. Different from normal auto-encoder, the CVENet extracts the uplink channel covariance to a latent distribution space and then predicts the downlink channel covariance by the sample of the space. Simulation results demonstrate that the CVENet performs better than the conventional dictionary pairs algorithm. And the CVENet still achieves robustness in a circumstance where the channel environment of the training stage is different from the deployment stage, which shows its practical applicability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.