Abstract

BackgroundThe incidence rate of Posttraumatic stress disorder (PTSD) is currently increasing due to wars, terrorism, and pandemic disease situations. Therefore, accurate detection of PTSD is crucial for the treatment of the patients, for this purpose, the present study aims to classify individuals with PTSD versus healthy control. MethodsThe resting-state functional MRI (rs-fMRI) scans of 19 PTSD and 24 healthy control male subjects have been used to identify the activation pattern in most affected brain regions using group-level independent component analysis (ICA) and t-test. To classify PTSD-affected subjects from healthy control six machine learning techniques including random forest, Naive Bayes, support vector machine, decision tree, K-nearest neighbor, linear discriminant analysis, and deep learning three-dimensional 3D-CNN have been performed on the data and compared. ResultsThe rs-fMRI scans of the most commonly investigated 11 regions of trauma-exposed and healthy brains are analyzed to observe their level of activation. Amygdala and insula regions are determined as the most activated regions from the regions-of-interest in the brain of PTSD subjects. In addition, machine learning techniques have been applied to the components extracted from ICA but the models provided low classification accuracy. The ICA components are also fed into the 3D-CNN model, which is trained with a 5-fold cross-validation method. The 3D-CNN model demonstrated high accuracies, such as 98.12%, 98.25 %, and 98.00 % on average with training, validation, and testing datasets, respectively. ConclusionThe findings indicate that 3D-CNN is a surpassing method than the other six considered techniques and it helps to recognize PTSD patients accurately.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.