Abstract
<span>In precision farming, identifying weeds is an essential first step in planning an integrated pest management program in cereals. By knowing the species present, we can learn about the types of herbicides to use to control them, especially in non-weeding crops where mechanical methods that are not effective (tillage, hand weeding, and hoeing and mowing). Therefore, using the deep learning based on convolutional neural network (CNN) will help to automatically identify weeds and then an intelligent system comes to achieve a localized spraying of the herbicides avoiding their large-scale use, preserving the environment. In this article we propose a smart system based on object detection models, implemented on a Raspberry, seek to identify the presence of relevant objects (weeds) in an area (wheat crop) in real time and classify those objects for decision support including spot spray with a chosen herbicide in accordance to the weed detected.</span>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Electrical and Computer Engineering (IJECE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.