Abstract

Offline handwritten signature verification is a challenging pattern recognition task. One of the most significant limitations of the handwritten signature verification problem is inadequate data for training phases. Due to this limitation, deep learning methods that have obtained the state-of-the-art results in many areas achieve quite unsuccessful results when applied to signature verification. In this study, a new use of Cycle-GAN is proposed as a data augmentation method to address the inadequate data problem on signature verification. We also propose a novel signature verification system based on Caps-Net. The proposed data augmentation method is tested on four different convolutional neural network (CNN) methods, VGG16, VGG19, ResNet50, and DenseNet121, which are widely used in the literature. The method has provided a significant contribution to all mentioned CNN methods’ success. The proposed data augmentation method has the best effect on the DenseNet121. We also tested our data augmentation method with the proposed signature verification system on two widely used databases: GPDS and MCYT. Compared to other studies, our verification system achieved the state-of-the-art results on MCYT database, while it reached the second-best verification result on GPDS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.