Abstract

To study the effect of computerized tomography (CT) images based on deep learning algorithms on the diagnosis of pulmonary nodules and the effect of radiofrequency ablation (RFA), the U-shaped fully convolutional neural network (FCNN) (U-Net) was enhanced. The convolutional neural network (CNN) algorithm was compared with the U-Net algorithm, and segmentation performances were analyzed. Then, it was applied to the CT image diagnosis of 110 lung cancer patients admitted to hospital. The patients in the observation group (55 cases) were diagnosed based on the improved U-Net algorithm, while those in the control group (55 cases) were diagnosed by traditional methods and then treated with RFA. The Dice coefficient (0.8753) and intersection over union (IOU) (0.8788) obtained by the proposed algorithm were remarkably higher than the Dice coefficient (0.7212) and IOU (0.7231) obtained by the CNN algorithm, and the differences were considerable (P < 0.05). The boundary of the pulmonary nodule can be segmented more accurately by the proposed algorithm, which had the segmentation result closest to the gold standard among the three algorithms. The diagnostic accuracy of the pulmonary nodule in the observation group (95.3%) was superior to that of the control group (90.7%). The long diameter, volume, and maximum area of the pulmonary nodule of the observation group were significantly higher than those of the control group, with substantial differences (P < 0.05). Patients were reexamined after one, three, and six months of treatment, and 71 patients (64.55%) had complete remission, 32 patients (29.10%) had partial remission, 6 patients (5.45%) had stable disease, and 1 patient (0.90%) had disease progression. The remission rate (complete remission + partial remission) was 93.65%. The improved U-NET algorithm had good image segmentation performance and ideal segmentation effect. It can clearly display the shape of pulmonary nodules, locate the lesions, and accurately evaluate the therapeutic effect of RFA, which had clinical application value.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.