Abstract
Neural cryptography is a technique that uses neural networks for secure data encryption. Cryptoanalysis, on the other hand, deals with analyzing and decrypting ciphers, codes, and encrypted text without using a real key. Chosen-plaintext cryptanalysis is a subfield of cryptanalysis where both plain text and ciphertext are available and the goal is either to find the encryption technique, the encryption key, or both. This study addresses chosen plaintext cryptanalysis within public key cryptography, to categorize topics of encrypted text. Using a fixed encryption technique and key, the focus was placed on creating a framework that identifies the topic associated with ciphertext, using diverse plaintexts and their corresponding cipher texts. To our knowledge, this is the first time that chosen-plaintext cryptanalysis has been discussed in the context of topic modeling. The paper used deep learning techniques such as CNNs, GRUs, and LSTMs to process sequential data. The proposed framework achieved up to 67% precision, 99% recall, 80% F1-score, and 71% AUPR on a dataset, showcasing promising results and opening avenues for further research in this cryptanalysis subarea.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Engineering, Technology & Applied Science Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.