Abstract
Early cost estimation is a decisive value driver in the product development process in manufacturing industries. Machine learning offers new intelligent methods to support traditional cost calculation processes. While traditional research on intelligent cost estimation focuses on machine learning regression or classification models, we propose a new approach based on interlocking deep learning methods. In this paper we investigate the applicability of deep learning techniques, focusing on image recognition and deep learning regression as well as autoencoding to estimate product costs of circuit boards to be purchased. We create and evaluate deep learning models using real-world data from an original equipment manufacturer (OEM). Our findings suggest that deep learning models can streamline cost calculation and estimation processes while deep learning object recognition-based cost estimation outperforms autoencoding techniques. This research is designed to be transferable to other cost estimation projects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.