Abstract

Diabetic retinopathy (DR) results in vision loss if not treated early. A computer-aided diagnosis (CAD) system based on retinal fundus images is an efficient and effective method for early DR diagnosis and assisting experts. A computer-aided diagnosis (CAD) system involves various stages like detection, segmentation and classification of lesions in fundus images. Many traditional machine-learning (ML) techniques based on hand-engineered features have been introduced. The recent emergence of deep learning (DL) and its decisive victory over traditional ML methods for various applications motivated the researchers to employ it for DR diagnosis, and many deep-learning-based methods have been introduced. In this paper, we review these methods, highlighting their pros and cons. In addition, we point out the challenges to be addressed in designing and learning about efficient, effective and robust deep-learning algorithms for various problems in DR diagnosis and draw attention to directions for future research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.