Abstract

We propose a deep-learning-based approach to producing computer-generated holograms (CGHs) of real-world scenes. We design an end-to-end convolutional neural network (the Stereo-to-Hologram Network, SHNet) framework that takes a stereo image pair as input and efficiently synthesizes a monochromatic 3D complex hologram as output. The network is able to rapidly and straightforwardly calculate CGHs from the directly recorded images of real-world scenes, eliminating the need for time-consuming intermediate depth recovery and diffraction-based computations. We demonstrate the 3D reconstructions with clear depth cues obtained from the SHNet-based CGHs by both numerical simulations and optical holographic virtual reality display experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.