Abstract
—Thoracic disease, like many other diseases, can lead to complications. Existing multi-label medical image learning problems typically include rich pathological information, such as images, attributes, and labels, which are crucial for supplementary clinical diagnosis. However, the majority of contemporary efforts exclusively focus on regression from input to binary labels, ignoring the relationship between visual features and semantic vectors of labels. In addition, there is an imbalance in data amount between diseases, which frequently causes intelligent diagnostic systems to make erroneous disease predictions. Therefore, we aim to improve the accuracy of the multi-label classification of chest X-ray images. Chest X-ray14 pictures were utilized as the multi-label dataset for the experiments in this study. By fine-tuning the ConvNeXt network, we got visual vectors, which we combined with semantic vectors encoded by BioBert to map the two different forms of features into a common metric space and made semantic vectors the prototype of each class in metric space. The metric relationship between images and labels is then considered from the image level and disease category level, respectively, and a new dual-weighted metric loss function is proposed. Finally, the average AUC score achieved in the experiment reached 0.826, and our model outperformed the comparison models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.