Abstract

In this letter, we present a deep learning algorithm for channel estimation in communication systems. We consider the time–frequency response of a fast fading communication channel as a 2D image. The aim is to find the unknown values of the channel response using some known values at the pilot locations. To this end, a general pipeline using deep image processing techniques, image super-resolution (SR), and image restoration (IR) is proposed. This scheme considers the pilot values, altogether, as a low-resolution image and uses an SR network cascaded with a denoising IR network to estimate the channel. Moreover, the implementation of the proposed pipeline is presented. The estimation error shows that the presented algorithm is comparable to the minimum mean square error (MMSE) with full knowledge of the channel statistics, and it is better than an approximation to linear MMSE. The results confirm that this pipeline can be used efficiently in channel estimation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.