Abstract
PurposeQuantification of carotid plaques has been shown to be important for assessing as well as monitoring the progression and regression of carotid atherosclerosis. Various metrics have been proposed and methods of measurements ranging from manual tracing to automated segmentations have also been investigated. Of those metrics, quantification of carotid plaques by measuring vessel‐wall‐volume (VWV) using the segmented media‐adventitia (MAB) and lumen‐intima (LIB) boundaries has been shown to be sensitive to temporal changes in carotid plaque burden. Thus, semi‐automatic MAB and LIB segmentation methods are required to help generate VWV measurements with high accuracy and less user interaction.MethodsIn this paper, we propose a semiautomatic segmentation method based on deep learning to segment the MAB and LIB from carotid three‐dimensional ultrasound (3DUS) images. For the MAB segmentation, we convert the segmentation problem to a pixel‐by‐pixel classification problem. A dynamic convolutional neural network (Dynamic CNN) is proposed to classify the patches generated by sliding a window along the norm line of the initial contour where the CNN model is fine‐tuned dynamically in each test task. The LIB is segmented by applying a region‐of‐interest of carotid images to a U‐Net model, which allows the network to be trained end‐to‐end for pixel‐wise classification.ResultsA total of 144 3DUS images were used in this development, and a threefold cross‐validation technique was used for evaluation of the proposed algorithm. The proposed algorithm‐generated accuracy was significantly higher than the previous methods but with less user interactions. Comparing the algorithm segmentation results with manual segmentations by an expert showed that the average Dice similarity coefficients (DSC) were 96.46 ± 2.22% and 92.84 ± 4.46% for the MAB and LIB, respectively, while only an average of 34 s (vs 1.13, 2.8 and 4.4 min in previous methods) was required to segment a 3DUS image. The interobserver experiment indicated that the DSC was 96.14 ± 1.87% between algorithm‐generated MAB contours of two observers' initialization.ConclusionsOur results showed that the proposed carotid plaque segmentation method obtains high accuracy and repeatability with less user interactions, suggesting that the method could be used in clinical practice to measure VWV and monitor the progression and regression of carotid plaques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.