Abstract

Extremely large-scale massive multiple-input-multiple-output (XL-MIMO) is regarded as a promising technology for next-generation communication systems. In order to enhance the beamforming gains, codebook-based beam training is widely adopted in XL-MIMO systems. However, in XL-MIMO systems, the near-field domain expands, and near-field codebook should be adopted for beam training, which significantly increases the pilot overhead. To tackle this problem, we propose a deep learning-based beam training scheme where the near-field channel model and the near-field codebook are considered. To be specific, we first utilize the received signals corresponding to the far-field wide beams to estimate the optimal near-field beam. Two training schemes are proposed, namely the original and the improved schemes. The original scheme estimates the optimal near-field codeword directly based on the output of the neural networks. By contrast, the improved scheme performs additional beam testing, which can significantly improve the performance of beam training. Finally, the simulation results show that our proposed schemes can significantly reduce the training overhead in the near-field domain and achieve beamforming gains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.