Abstract

Heart diseases is the world's principal cause of death, and arrhythmia poses a serious risk to the health of the patient. Electrocardiogram (ECG) signals can be used to detect arrhythmia early and accurately, which is essential for immediate treatment and intervention. Deep learning approaches have played an important role in automatically identifying complicated patterns from ECG data, which can be further used to identify arrhythmia. In this paper, deep-learning-based methods for arrhythmia identification using ECG signals are thoroughly studied and their performances evaluated on the basis of accuracy, specificity, precision, and F1 score. We propose the development of a small CNN, and its performance is compared against pretrained models like GoogLeNet. The comparative study demonstrates the promising potential of deep-learning-based arrhythmia identification using ECG signals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.