Abstract

In engineering acoustics, the propagation of elastic flexural waves in plate and shell structures is a common transmission path of vibrations and structure-borne noises. Phononic metamaterials with a frequency band gap can effectively block elastic waves in certain frequency ranges, but often require a tedious trial-and-error design process. In recent years, deep neural networks (DNNs) have shown competence in solving various inverse problems. This study proposes a deep-learning-based workflow for phononic plate metamaterial design. The Mindlin plate formulation was used to expedite the forward calculations, and the neural network was trained for inverse design. We showed that, with only 360 sets of data for training and testing, the neural network attained a 2% error in achieving the target band gap, by optimizing five design parameters. The designed metamaterial plate showed a -1 dB/mm omnidirectional attenuation for flexural waves around 3 kHz.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.