Abstract

Smartphone has long been considered as one excellent platform for disease screening and diagnosis, especially when combined with microfluidic paper-based analytical devices (μPADs) that feature low cost, ease of use, and pump-free operations. In this paper, we report a deep learning-assisted smartphone platform for ultra-accurate testing of paper-based microfluidic colorimetric enzyme-linked immunosorbent assay (c-ELISA). Different from existing smartphone-based μPAD platforms, whose sensing reliability is suffered from uncontrolled ambient lighting conditions, our platform is able to eliminate those random lighting influences for enhanced sensing accuracy. We first constructed a dataset that contains c-ELISA results (n=2048) of rabbit IgG as the model target on μPADs under eight controlled lighting conditions. Those images are then used to train four different mainstream deep learning algorithms. By training with these images, the deep learning algorithms can well eliminate the influences of lighting conditions. Among them, the GoogLeNet algorithm gives the highest accuracy (>97%) in quantitative rabbit IgG concentration classification/prediction, which also provides 4% higher area under curve (AUC) value than that of the traditional curve fitting results analysis method. In addition, we fully automate the whole sensing process and achieve the "image in, answer out" to maximize the convenience of the smartphone. A simple and user-friendly smartphone application has been developed that controls the whole process. This newly developed platform further enhances the sensing performance of μPADs for use by laypersons in low-resource areas and can be facilely adapted to the real disease protein biomarkers detection by c-ELISA on μPADs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.